Skip to main content

What is MCP?

Model Context Protocol (MCP) is an open standard for connecting AI agents to external systems. Think of it as a universal adapter for your infrastructure.
MCP servers handle authentication and permissions. Agents never see your credentials directly.

Why MCP?

ApproachSecurityMaintenanceEcosystem
Direct APIFull accessCustom codeLimited
MCP ProtocolFine-grainedStandard interface100+ servers

Architecture

Agent → Station MCP Client → MCP Server → External Service

        Validates permissions
Key Benefits:
  • Agents only see results, never credentials
  • Grant specific operations (read vs write)
  • Same servers work with Claude Desktop, Cursor, and Station

Configuring MCP Servers

Add servers to your environment’s template.json:
{
  "mcpServers": {
    "filesystem": {
      "command": "npx",
      "args": ["-y", "@modelcontextprotocol/server-filesystem@latest", "/workspace"]
    },
    "github": {
      "command": "npx",
      "args": ["-y", "@modelcontextprotocol/server-github"],
      "env": {
        "GITHUB_PERSONAL_ACCESS_TOKEN": "{{GITHUB_TOKEN}}"
      }
    }
  }
}

Filesystem

{
  "filesystem": {
    "command": "npx",
    "args": ["-y", "@modelcontextprotocol/server-filesystem@latest", "/path/to/allow"]
  }
}

GitHub

{
  "github": {
    "command": "npx",
    "args": ["-y", "@modelcontextprotocol/server-github"],
    "env": {
      "GITHUB_PERSONAL_ACCESS_TOKEN": "{{GITHUB_TOKEN}}"
    }
  }
}

PostgreSQL

{
  "postgres": {
    "command": "npx",
    "args": ["-y", "@modelcontextprotocol/server-postgres", "{{DATABASE_URL}}"]
  }
}

AWS

{
  "aws": {
    "command": "uvx",
    "args": ["mcp-server-aws"],
    "env": {
      "AWS_ACCESS_KEY_ID": "{{AWS_ACCESS_KEY_ID}}",
      "AWS_SECRET_ACCESS_KEY": "{{AWS_SECRET_ACCESS_KEY}}",
      "AWS_REGION": "us-east-1"
    }
  }
}

Using Template Variables

Store secrets in variables.yml:
GITHUB_TOKEN: ghp_xxxxxxxxxxxx
DATABASE_URL: postgresql://user:pass@localhost/db
AWS_ACCESS_KEY_ID: AKIA...
AWS_SECRET_ACCESS_KEY: secret...
Reference in template.json with {{VARIABLE_NAME}}:
{
  "env": {
    "GITHUB_PERSONAL_ACCESS_TOKEN": "{{GITHUB_TOKEN}}"
  }
}

Discovering Tools

After configuring MCP servers:
# List all available tools
stn mcp tools

# Sync tools (after config changes)
stn env sync

Using Tools in Agents

Reference tools by name in your agent’s tools array:
---
tools:
  - "__read_file"
  - "__write_file"
  - "__search_files"
  - "__github_create_issue"
---
Agents can only use tools explicitly listed in their tools array.

Station MCP Tools

When you connect Station as an MCP server to your AI assistant (Claude Desktop, Cursor, etc.), Station provides 41 built-in tools for managing agents:

Agent Management (11 tools)

ToolDescription
create_agentCreate new agents with prompts and tools
update_agentModify agent configuration
update_agent_promptUpdate agent system prompt
delete_agentRemove an agent
list_agentsList all agents (with filters)
get_agent_detailsGet full agent configuration
get_agent_schemaGet agent’s input schema
add_toolAdd MCP tool to agent
remove_toolRemove tool from agent
add_agent_as_toolCreate multi-agent hierarchies
remove_agent_as_toolBreak agent hierarchy links

Agent Execution (4 tools)

ToolDescription
call_agentExecute an agent with task
list_runsList agent execution history
inspect_runGet detailed run information
list_runs_by_modelFilter runs by AI model

Evaluation & Testing (7 tools)

ToolDescription
generate_and_test_agentGenerate test scenarios and run agent
batch_execute_agentsRun multiple agents in parallel
evaluate_benchmarkRun LLM-as-judge evaluation
evaluate_datasetEvaluate entire dataset
export_datasetExport runs for analysis
list_benchmark_resultsList evaluation results
get_benchmark_statusCheck evaluation status

Reports & Analytics (4 tools)

ToolDescription
create_reportCreate team performance report
generate_reportRun benchmarks and generate report
list_reportsList all reports
get_reportGet report details

Environment Management (3 tools)

ToolDescription
create_environmentCreate new environment
delete_environmentDelete environment
list_environmentsList all environments

MCP Server Management (5 tools)

ToolDescription
add_mcp_server_to_environmentAdd MCP server config
update_mcp_server_in_environmentUpdate MCP server
delete_mcp_server_from_environmentRemove MCP server
list_mcp_servers_for_environmentList configured servers
list_mcp_configsList all MCP configurations

Tool Discovery (2 tools)

ToolDescription
discover_toolsDiscover tools from MCP servers
list_toolsList available tools

Scheduling (3 tools)

ToolDescription
set_scheduleSchedule agent with cron expression
remove_scheduleRemove agent schedule
get_scheduleGet agent schedule details

Bundles (1 tool)

ToolDescription
create_bundle_from_environmentPackage environment as bundle

Faker System (1 tool)

ToolDescription
faker_create_standaloneCreate AI-powered mock data server
To see all available tools in your AI assistant, just ask: “Show me all Station MCP tools available”

Next Steps