What is MCP?
Model Context Protocol (MCP) is an open standard for connecting AI agents to external systems. Think of it as a universal adapter for your infrastructure.
MCP servers handle authentication and permissions. Agents never see your credentials directly.
Why MCP?
| Approach | Security | Maintenance | Ecosystem |
|---|
| Direct API | Full access | Custom code | Limited |
| MCP Protocol | Fine-grained | Standard interface | 100+ servers |
Architecture
Agent → Station MCP Client → MCP Server → External Service
↓
Validates permissions
Key Benefits:
- Agents only see results, never credentials
- Grant specific operations (read vs write)
- Same servers work with Claude Desktop, Cursor, and Station
Configuring MCP Servers
Add servers to your environment’s template.json:
{
"mcpServers": {
"filesystem": {
"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-filesystem@latest", "/workspace"]
},
"github": {
"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-github"],
"env": {
"GITHUB_PERSONAL_ACCESS_TOKEN": "{{GITHUB_TOKEN}}"
}
}
}
}
Popular MCP Servers
Filesystem
{
"filesystem": {
"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-filesystem@latest", "/path/to/allow"]
}
}
GitHub
{
"github": {
"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-github"],
"env": {
"GITHUB_PERSONAL_ACCESS_TOKEN": "{{GITHUB_TOKEN}}"
}
}
}
PostgreSQL
{
"postgres": {
"command": "npx",
"args": ["-y", "@modelcontextprotocol/server-postgres", "{{DATABASE_URL}}"]
}
}
AWS
{
"aws": {
"command": "uvx",
"args": ["mcp-server-aws"],
"env": {
"AWS_ACCESS_KEY_ID": "{{AWS_ACCESS_KEY_ID}}",
"AWS_SECRET_ACCESS_KEY": "{{AWS_SECRET_ACCESS_KEY}}",
"AWS_REGION": "us-east-1"
}
}
}
Using Template Variables
Store secrets in variables.yml:
GITHUB_TOKEN: ghp_xxxxxxxxxxxx
DATABASE_URL: postgresql://user:pass@localhost/db
AWS_ACCESS_KEY_ID: AKIA...
AWS_SECRET_ACCESS_KEY: secret...
Reference in template.json with {{VARIABLE_NAME}}:
{
"env": {
"GITHUB_PERSONAL_ACCESS_TOKEN": "{{GITHUB_TOKEN}}"
}
}
After configuring MCP servers:
# List all available tools
stn mcp tools
# Sync tools (after config changes)
stn env sync
Reference tools by name in your agent’s tools array:
---
tools:
- "__read_file"
- "__write_file"
- "__search_files"
- "__github_create_issue"
---
Agents can only use tools explicitly listed in their tools array.
When you connect Station as an MCP server to your AI assistant (Claude Desktop, Cursor, etc.), Station provides 41 built-in tools for managing agents:
| Tool | Description |
|---|
create_agent | Create new agents with prompts and tools |
update_agent | Modify agent configuration |
update_agent_prompt | Update agent system prompt |
delete_agent | Remove an agent |
list_agents | List all agents (with filters) |
get_agent_details | Get full agent configuration |
get_agent_schema | Get agent’s input schema |
add_tool | Add MCP tool to agent |
remove_tool | Remove tool from agent |
add_agent_as_tool | Create multi-agent hierarchies |
remove_agent_as_tool | Break agent hierarchy links |
| Tool | Description |
|---|
call_agent | Execute an agent with task |
list_runs | List agent execution history |
inspect_run | Get detailed run information |
list_runs_by_model | Filter runs by AI model |
| Tool | Description |
|---|
generate_and_test_agent | Generate test scenarios and run agent |
batch_execute_agents | Run multiple agents in parallel |
evaluate_benchmark | Run LLM-as-judge evaluation |
evaluate_dataset | Evaluate entire dataset |
export_dataset | Export runs for analysis |
list_benchmark_results | List evaluation results |
get_benchmark_status | Check evaluation status |
| Tool | Description |
|---|
create_report | Create team performance report |
generate_report | Run benchmarks and generate report |
list_reports | List all reports |
get_report | Get report details |
| Tool | Description |
|---|
create_environment | Create new environment |
delete_environment | Delete environment |
list_environments | List all environments |
| Tool | Description |
|---|
add_mcp_server_to_environment | Add MCP server config |
update_mcp_server_in_environment | Update MCP server |
delete_mcp_server_from_environment | Remove MCP server |
list_mcp_servers_for_environment | List configured servers |
list_mcp_configs | List all MCP configurations |
| Tool | Description |
|---|
discover_tools | Discover tools from MCP servers |
list_tools | List available tools |
| Tool | Description |
|---|
set_schedule | Schedule agent with cron expression |
remove_schedule | Remove agent schedule |
get_schedule | Get agent schedule details |
| Tool | Description |
|---|
create_bundle_from_environment | Package environment as bundle |
| Tool | Description |
|---|
faker_create_standalone | Create AI-powered mock data server |
To see all available tools in your AI assistant, just ask: “Show me all Station MCP tools available”
Next Steps